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1. Introduction

Consider an Abelian gauge theory with many scalar fields {φi} all having integer

charges {Qi}, and suppose one scalar φV with charge QV obtains a vacuum expectation

value (VEV). It is well-known that the low-energy effective theory well below the VEV

has a ZQV
discrete symmetry [1, 2]. Fields can be assigned charges under the ZQV

sym-

metry, and the effective lagrangian is built up from all operators that are ZQV
-invariant

combinations of the fields.

In non-supersymmetric field theories any combination of {φi} and {φ†
i} is allowed to

make gauge-invariant operators. Therefore, ZQV
is an appropriate label for the discrete

gauge symmetry of the effective theory, since it implies no distinction between allowed oper-

ators that have charge −nQV under the original U(1) versus those that have charge +nQV

(where n is positive integer). There may, however, exist a hierarchy between operators of

the same dimension but different absolute values of their charges [3].

In a supersymmetric field theory, merely stating that U(1) → ZQV
when φV develops

a VEV loses information. Holomorphy of the superpotential implies that factors of 〈φ†
V 〉

alone cannot give rise directly to low-energy operators in the effective superpotential. As a

result, the coefficients of two chiral operators in the low energy theory with the same mass

dimension but opposite sign charges can be very different [4].

The purpose of this work is to describe the coefficient strengths of allowed operators

in the effective superpotential as a function of their U(1) charges in the full theory. This

is the subject of section 2. In section 3 we apply our results to construct a small value

for the µ term in the MSSM. In section 4, we show how this mechanism for the µ term

naturally gives rise to a brief period of late-time thermal inflation, which can help to dilute

overabundant or late-decaying relics such as gravitinos or moduli. Our conclusions are

given in section 5. Some technical details are deferred to an appendix.
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2. Holomorphy and discrete gauge symmetries

Suppose a U(1) gauge symmetry is spontaneously broken in an N = 1 supersymmetric

gauge theory due to the condensation of one of more charged scalar fields. Even though

the gauge symmetry is broken, the resulting effective theory will retain an invariance under

spurious U(1) transformations where the VEVs transform as well. The non-spurious resid-

ual discrete symmetry present in the effective theory is the subgroup of the spurious U(1)

that leaves the VEVs invariant. We shall make use of this spurious symmetry in discussing

the additional selection rules for superpotential operators due to holomorphy. To begin,

we discuss the case of a single VEV. Afterwards, we generalize to the more complicated

case of two or more VEVs.

2.1 One VEV: supersymmetric Zhol
QV

discrete symmetry

A supersymmetric field theory can remain supersymmetric upon the condensation of a

single charged field φV if there is a Fayet-Iliopoulos (FI) term in the D-term potential with

sign opposite to that of QV :

D = QV |φV |2 − ξ + · · · (assuming QV , ξ > 0). (2.1)

For 〈φV 〉 =
√

ξ/QV , the gauge symmetry is broken but supersymmetry need not be. We

assume there are no F -terms that would break supersymmetry for a non-zero 〈φV 〉. We

call the low-scale symmetry group in this case Zhol
QV

, and the symmetry breaking path is

U(1)
〈φV 〉−→ Zhol

QV
. (2.2)

The leading operators allowed in the effective theory superpotential arise in three

ways:1

1. Holomorphic insertions. φV → 〈φV 〉 in the superpotential of the full theory. For

example,

Wfull ⊇
1

Ma+d−3
∗

φa
V O(d)(φi) −→

〈φV 〉a
Ma

∗

1

Md−3
∗

O(d)(φi) ⊆ Weff , (2.3)

where O(d)(φi) is an operator of mass dimension d composed of light fields {φi}, and

M∗ denotes the ultraviolet cutoff of the theory. This mechanism generates insertions

of 〈φV 〉/M∗ (but not 〈φ†
V 〉/M∗), and therefore only operators O(d)(φi) with total

charge equal to 0,−QV ,−2QV , . . . in the full theory can be generated in this way.

2. Inverse-holomorphic insertions. These arise from integrating out heavy fields whose

masses derive from 〈φV 〉. Mass terms for the superfields in the original superpoten-

tial are analytic in the VEVs leading to new operators suppressed by 1/〈φV 〉 when

these massive fields are integrated out. As an example, consider a theory with the

superpotential

W = λ1 φ4 φ2
−2 + λ2 φ−2 φ2

1, (2.4)

1See the appendix for a more detailed discussion.
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where the field φq has charge q. If φ4 obtains a VEV, φ−2 gets a large mass ∼ 〈φ4〉.
Upon integrating these fields out, the leading term in the effective superpotential is

Weff ⊇ − λ2
2

4λ1〈φ4〉
φ4

1. (2.5)

This mechanism produces operators with insertions of 1/〈φV 〉 of the form

Weff ⊇ Ma
∗

〈φV 〉a
1

Md−3
∗

O(d)(φi). (2.6)

The possible charges of the operators O(d)(φi) are +QV ,+2QV , . . ..

3. Supersymmetry breaking insertions. Supersymmetry breaking terms can transfer

Kähler potential terms to the effective superpotential. This last mechanism can

be schematically represented by

∫

d4θ
X†

M∗

1

Ma+b+d−2
∗

φa
V φ†

V
b O(d) −→

∫

d2θ
F †

X

M2
∗

〈φV 〉a〈φ†
V 〉b

Ma+b
∗

1

Md−3
∗

O(d) (2.7)

This mechanism always involves the supersymmetry breaking scale through the com-

bination m̃ = FX/M∗, as well as possible insertions of both 〈φV 〉/M∗ and 〈φ†
V 〉/M∗.

As expected, at the level of supersymmetry breaking, all operators consistent with

the full ZQV
symmetry are allowed. However, in the supersymmetric limit (m̃ → 0)

operators with total charge equal to −n QV , where n is a positive integer, are generated by

holomorphic insertions of 〈φV 〉 (mechanism 1), while operators with total charge +n QV

arise from integrating out holomorphic fields leading to inverse-holomorphic insertions of

1/〈φV 〉 (mechanism 2). The coefficients of two operators with the same dimension but

opposite charge can therefore be very different.2 If 〈φV 〉 ¿ M∗, operators generated by

mechanism 2 are potentially much larger than those from mechanism 1. This is the essential

difference between ZQV
and Zhol

QV
.

The distinction between ZQV
and Zhol

QV
remains significant if there is a hierarchy

m̃ ¿ 〈φV 〉. In this case the operators containing insertions of m̃ are typically extremely

suppressed relative to those generated by mechanisms 1 and 2 above. There is, however,

one important exception. The operators generated by mechanism 2 depend on which fields

in the full theory get large masses due to the VEV. If a particular operator with charge

+nQV does not arise in the effective superpotential due to mechanism 2, the operator will

only appear due to mechanism 3. On the other hand, if the superpotential of the full the-

ory is completely generic, mechanism 1 will generate every possible operator with charge

−nQV consistent with the other symmetries of the theory.

2More generally, these mechanisms can operate simultaneously leading to operator coefficients with

powers of 〈φV 〉 in both the numerator and the denominator. This does not change the power counting or

operator hierarchies discussed here.
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2.2 Several VEVs: flat directions

The D-term potential of a supersymmetric abelian gauge theory is

VD =
g2

2
D2, where D =

∑

i

Qi|φi|2 + ξ. (2.8)

For simplicity we assume ξ = 0, although our generic results do not depend on this choice.

An anomaly-free theory must have charges of either sign. Thus, whether or not ξ is present,

there is always a supersymmetric minimum of VD in which two fields with opposite-sign

charges develop VEVs.

We shall focus on the case of two fields φa and φ−b with charges a and −b obtaining

large VEVs. In practice, this can occur if some fields have tachyonic soft mass squareds.

The D-term potential cancels provided their expectation values satisfy

b|〈φa〉|2 = a|〈φ−b〉|2. (2.9)

Since the D-term potential is completely flat along this direction, no particular value

of 〈φa〉 is favored. This degeneracy is lifted and the VEVs are fixed by superpotential

and supersymmetry breaking operators. If the superpotential operators are small, either

because they are higher dimensional or if they have tiny couplings, the potential remains

almost flat along this direction, and the field VEV can be very large compared to the scale

of supersymmetry breaking.

The U(1) symmetry is broken along the almost flat direction by the VEVs of φa and

φ−b. The residual symmetry is Z(a,−b) where (a,−b) is the greatest common divisor of a

and b. If a and b are relatively prime numbers, there is no residual symmetry at all. Even

so, in a supersymmetric theory there is additional information to be had. To emphasize

this point, we indicate the symmetry breaking pattern as

U(1)
〈φa〉,〈φ−b〉−→ Zhol

(a,−b) (supersymmetric). (2.10)

The distinguishing feature between Zhol
(a,−b) and Z(a,−b) are the relative sizes of operators

appearing in the effective theory.

To describe the effective theory below the U(1) breaking scale, it is helpful to write φa

and φ−b in the form [5]

φa =
√

b τ e−iaΩ, φ−b =
√

a τ eibΩ, (2.11)

where τ and Ω are chiral superfields. The phase Ω can be gauged away completely, in

which case the superfield degree of freedom is transferred to the U(1) gauge multiplet

which is integrated out. The degrees of freedom associated with τ describe excitations

along the flat direction. To see why, note that all D-flat directions of condensing fields

can be parametrized by the gauge invariant chiral polynomials of these fields [6, 7]. In the

present case, the only possibility is

T = φb
aφ

a
−b =

√
abba τa+b, (2.12)
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which is clearly in one-to-one correspondence with τ .

The operators in the low-energy superpotential are formed much like in the case of a

single VEV. Instead of replacing φa and φ−b with their expectation values, however, they

are replaced by their expressions from eq. (2.11) with Ω → 0. The excitations of τ around

its expectation value are light, and are thus still present in the effective theory. Integrating

out heavy fields whose masses are proportional to the VEVs will also generate operators

with powers of φa and φ−b in denominators. The possible superpotential operators are

therefore

φs
aφ

t
−b

Md+s+t−3
∗

O(d,Q), Q = −sa + tb, (2.13)

where O(d,Q) refers to an operator of dimension d and charge Q, s and t are (possibly

negative) integers, and φa and φ−b are to be expressed in terms of τ . In addition to

these operators there are contributions from supersymmetry breaking, but they are gener-

ally subleading. The operator hierarchies due to Zhol
(a,−b) are best understood through an

illustration. Below, we derive a model of the µ term based on these considerations.

3. A small supersymmetric µ term

The operator hierarchy implied by a Zhol
(a,−b) symmetry together with an almost flat direction

provides a mechanism for generating a naturally weak-scale value of the supersymmetric

µ-term. Let a and b be relatively prime integers, and suppose the expectation values of

the fields φa and φ−b break a U(1)x gauge symmetry under which the Hu ·Hd superfield

bilinear has charge +1. The dominant superpotential terms in the full theory are

Wfull = λ1

(

φqa
a φqb

−b

M qa+qb−1
∗

)

Hu ·Hd + λ2

(

φb
aφ

a
−b

Ma+b−3
∗

)

, (3.1)

where M∗ ∼ MGUT or MPl is an ultraviolet cutoff scale, and qa and qb are the smallest

positive integers such that qaa−qbb = −1. These superpotential operators break D-flatness

and drive the VEVs to zero. To ensure non-zero expectation values, we include tachyonic

soft masses

Lsoft = m2
a|φa|2 + m2

b |φ−b|2. (3.2)

Since the stabilizing effects of F -terms in the potential are suppressed by powers of M∗,

the vacuum expectation values of φa and φ−b are much larger than the soft masses. A

similar structure of the full potential for a µ-term solution can be found in ref. [8].

Writing φa and φ−b in terms of τ , the leading terms in the scalar potential for τ are3

Vτ = −m̃2|τ |2 + λ̃2M
4
∗

( |τ |
M∗

)2(a+b)−2

(3.3)

3We show in the appendix that the Kähler potential for τ in the effective theory is canonical up to small

corrections. Thus, the Kähler potential does not play an important role in the bosonic potential for τ .
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where m̃2 and λ̃2 are obtained straightforwardly from the full potential. The scalar poten-

tial is minimized when

〈|τ |〉 ∼ M∗

(

m̃

M∗

)1/(a+b−2)

. (3.4)

So far, the potential depends only on the modulus of τ . A parametrically important

contribution to the potential that fixes the phase of τ is the supersymmetry breaking

operator

∫

d2θ
X

M∗

φb
aφ

a
−b

Ma+b
∗

M3
∗ −→ m̃M3

∗

(

τ

M∗

)a+b

. (3.5)

The solution for 〈τ〉 implies an effective µ term of size

µeff ∼ M∗

(

m̃

M∗

)

qa+qb
a+b−2

. (3.6)

Clearly, not all choices of a and b will work since (qa + qb)/(a + b− 2) = 1 is needed to get

µeff ∼ m̃. A general solution that guarantees this relation for any values of m̃ ¿ M∗ is

(a,−b) = (n + 1,−n) implying qa = n − 1, qb = n ⇒ qa + qb

a + b − 2
= 1, (3.7)

where n is a positive integer.

We note that different choices of (a,−b) can obtain different hierarchies of the µ term

with respect to the supersymmetry breaking scale m̃. This could be of importance for

model-building in split supersymmetry [9], when the µ term is desired to be much smaller

than m̃ in order for gauge coupling unification to work out. For example, choosing param-

eters such that the exponent in eq. (3.6) is greater than 1 gives

qa + qb

a + b − 2
= 1 + ∆, ⇒ µeff = m̃

(

m̃

M∗

)∆

. (3.8)

The value of ∆ can then be tuned, from the model-building perspective, to suppress the µ

term compared to the typical superpartner mass of m̃.

In passing to the effective theory, we must verify that corrections involving inverse

powers of φa and φ−b do not generate a µeff larger than the one we have found. For the

charges a = n + 1 and b = n, the only dangerous gauge-invariant combination is

1

φn+1φ−n
Hu ·Hd. (3.9)

For this to be an operator in the superpotential, three powers of M∗ or m̃ are needed to

make up the dimension. Since positive powers of M∗ cannot arise from integrating out

at scale |τ | . M∗, there are no large corrections to µeff . Similarly, any contribution from

supersymmetry breaking must come in with a power of m̃, and is therefore sub-leading

as well. Thus, we see that the strong correlation between the charge and dimension of

superpotential operators allowed by Zhol
(a,−b) leads to a naturally small effective µ term.

– 6 –
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As it stands, the model is potentially anomalous with respect to the new U(1)x gauge

symmetry. To avoid anomalies, new exotic matter is typically required and this can disrupt

gauge unification. Let us assume that the U(1)x charges of the MSSM fields are family

universal, and are consistent with an embedding in SU(5): q = u = e and d = l. For the

usual MSSM superpotential operators to be gauge invariant, with (hu + hd) = 1, we must

have

q = −1

2
hu, l =

3

2
hu − 1, (3.10)

Suppose we add to the model two pairs of doublets,

D1 ⊕ D1 =

(

1,2,
1

2

)

q1

⊕
(

1,2,−1

2

)

q̄1

, D2 ⊕ D2 =

(

1,2,
1

2

)

q2

⊕
(

1,2,−1

2

)

q̄2

, (3.11)

with U(1)x charges such that q1 + q̄1 = −(n + 1) and q2 + q̄2 = n. Since the doublets are

vector-like under the SM gauge group, they will not induce any pure SM anomalies. The

quantum numbers of these doublets also imply that the mixed SU(3)2c U(1)x, SU(2)2L U(1)x,

and U(1)2Y U(1)x anomaly conditions all have the form

Xi − ng = 0, i = 1, 2, 3 (3.12)

where the Xi represent the contributions from SM exotics other than D1, D1, D2, and D2.

All three anomaly conditions can be satisfied by including complete vector-like (with respect

to the SM) SU(5) multiplets, each of which automatically generates X1 = X2 = X3 in our

normalization. Furthermore, such multiplets do not contribute at all to the U(1)Y U(1)2X
mixed anomaly, for which the cancellation condition is

0 = (2hu − 1) − (q1 − q̄1) (n + 1) + (q2 − q̄2)n. (3.13)

One possible solution is q1 = q̄1, q2 = q̄2, and hu = 1/2. Thus, by adding two pairs of

doublets and some number of complete SU(5) multiplets, it is possible to cancel all the SM-

U(1)x mixed anomalies in the model. The remaining U(1)3x and gravity-U(1)x anomalies

can be eliminated by including SM gauge singlets (see, e.g., [10, 11]).

Our solution to the anomaly constraints can also be consistent with gauge unifica-

tion. In this regard, only the two pairs of doublets pose a threat. However, given their

charges they can obtain large masses when φn+1 and φ−n condense from the superpotential

operators

W ⊃ φn+1D̄1D1 + φ−nD̄2D2. (3.14)

For very large VEVs, within a couple of orders magnitude of 1016 GeV, the doublets will

be very heavy, they will only slightly disrupt the running of the gauge couplings, and

unification will be preserved. This mechanism is attractive because it circumvents some of

the difficulties associated with more common U(1)x solutions to the µ problem with respect

to unification [11].

– 7 –
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2m τ 0
2

τ 0

V τ

τ 0 < T

|τ|0

m << T << τ 0

T < m

Figure 1: An illustration of the temperature-corrected scalar potential. The red (dotted) line

shows the potential at very high temperatures T À τ0, while the green (solid) line corresponds to

intermediate temperatures in the range m̃ ¿ T ¿ τ0, and the lower blue (dashed) line shows the

potential for T ¿ m̃.

4. Thermal inflation

The extremely shallow potentials that arise naturally from breaking a supersymmetric U(1)

gauge symmetry can also play an important role in the early universe. When a potential is

almost flat, thermal corrections often induce a metastable false vacuum. For a system stuck

in such a vacuum, the excess vacuum energy may come to dominate the energy density of

the universe giving rise to a period of late-time thermal inflation [12, 13]. In the present

section we show how this scenario is realized within the model considered above.

The effect of thermal corrections on the potential depends on the temperature relative

to the zero-temperature expectation value, τ0 ≡ 〈τ〉T=0 [14]. At very high temperature,

T À τ0, the exotic U(1)x gauge bosons and gauginos are abundant in the plasma, and they

induce positive soft squared masses for φa and φ−b of order g2
xT 2 À m̃2. In this case, the

unique minimum of the finite-temperature effective potential lies at the origin, where the

U(1)x gauge symmetry is unbroken.

At temperatures smaller than τ0, but still much larger than m̃, the potential has two

minima [14]. For small field values, |τ | ¿ τ0, the gauge bosons are light and they again

generate soft squared masses of order g2
xT 2. These thermal corrections induce a local

minimum at the origin. Conversely, for large field values, |τ | À T , the gauge bosons and

gauginos are very heavy and the thermal corrections they induce are therefore Boltzmann-

suppressed. Since the couplings of the τ excitations to other fields are suppressed by powers

of τ/M∗, the effective potential is only slightly modified for these large values of |τ |, and a

minimum near |τ | = τ0 persists. For T ¿ τ0, this is the global minimum of the potential.

The potential is illustrated in figure 1.

The cosmological effects of this potential are determined by whether or not τ is trapped

in the local vacuum at τ = 0 after primordial inflation. This will almost certainly be the

case if the reheating temperature after inflation exceeds τ0. Even for reheating temperatures

– 8 –
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below τ0, the τ field may be trapped at the origin by the “Hubble mass” operator, H2|τ |2,
provided it is generated with a positive sign [15]. If the field is not trapped at the origin,

it will behave as a moduli field, and will be cosmologically dangerous if it decays after the

onset of nucleosynthesis.

Let us assume that the τ field becomes trapped at the origin. The tunneling rate from

this local minimum to the true vacuum is typically extremely small for T > m̃ [16], so this

minimum is metastable until T ∼ m̃. The vacuum energy of the false vacuum is of order

m̃2τ2
0 compared to the value at the global minimum. If the universe is initially radiation-

dominated, then as the temperature cools below T ∼ √
m̃τ0 the excess vacuum energy

becomes the dominant component of the total energy density, and the universe begins to

inflate. The Hubble rate during this era is

H = H0 =

√

8π

3

m̃τ0

MPl
, (4.1)

which determines the expansion rate, a(t) = a(t0)e
H0(t−t0). The exponential expansion

ceases when the temperature falls below T ∼ m̃ yielding a total number of e-foldings

Ne ' ln

(√
m̃τ0

m̃

)

=
1

2
ln

(τ0

m̃

)

. (4.2)

This number is of order 10 for m̃ ∼ 103 GeV and τ0 ∼ 1012 GeV. Such a small number of

e-foldings is not enough to disrupt the density perturbation induced by primordial infla-

tion [17]. The amount of inflation will be somewhat less if the universe is matter dominated

before thermal inflation. For example, a moduli field with a Planck scale VEV and a shal-

low potential with curvature of order m̃ will dominate the energy density of the universe

once the temperature falls below T ∼ √
m̃MPl. This postpones the start of thermal infla-

tion, reducing the temperature at which inflation begins by a factor of (τ0/MPl)
1/6 [12],

and decreasing the number of e-foldings by an amount ln(τ0/MPl)/6.

Once T falls below m̃, the τ field rolls down the potential towards the global minimum

and begins to oscillate. The oscillations dominate the total energy density until the τ field

decays away. Assuming the coupling between τ and the Higgs fields to be of the form of

eq. (3.1), we estimate this decay rate to be

Γτ = γ
m̃3

τ2
0

, (4.3)

where γ is a dimensionless constant less than or on the order of unity. If the products of

this decay thermalize rapidly, the reheating temperature after the decay is [18]

TRH '
(

3

π3g∗

)1/4

(MPl Γτ )
1/2 (4.4)

' 3 GeV

(

10

g∗

)1/4 (

m̃

1TeV

)3/2 (

1013GeV

τ0

)

γ1/2.

The reheating temperature must be greater than about 5MeV to preserve the successful

predictions of nucleosynthesis [19], and this implies an upper bound on τ0 on the order

– 9 –
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of 1016 GeV (for γ = 1 and m̃ = 1TeV). For comparison, if we set M∗ = MPl/
√

8π in

eq. (3.4), we find τ0
<∼ 2 × 1013, 2 × 1015, 5 × 1016 GeV for (a + b) = 5, 7, 9 where a and

b are the powers in eq. (3.1).

Thermal inflation provides a mechanism to reduce the density of unwanted relics. In

addition to dilution by the inflationary expansion, a decoupled relic is diluted even further

by the entropy released when the τ ’s decay by a factor of order
√

m̃5MPl/τ
6
0 . This dilution

factor may even be needed to reduce the relic abundance of late-decaying gravitinos and

moduli that could disrupt big bang nucleosynthesis, or of other particles with an overly large

energy density at late times [20]. For gravitinos and moduli, the dilution factor in our model

is sufficient to lower their abundance to an acceptable level provided τ0 & 1010 GeV [12].

Unfortunately, desirable relics such as a dark matter particle or a baryon asymmetry will

also be diluted. The extent to which they are regenerated depends on TRH , as well as

the details of the τ decay. Even for very low reheating temperatures, well below 1 GeV,

dark matter LSP’s can be created non-thermally in the decays of the τ [21], leading to

a nonthermal dark matter candidate. The baryon asymmetry is more difficult to explain

within this scenario, but it might be generated through new dynamics associated with the

flat direction [22, 23].

5. Conclusions

We have examined the operator hierarchies that emerge from the spontaneous breakdown

of a U(1) gauge symmetry in a supersymmetric theory. The constraints induced by holo-

morphy lead to large hierarchies between operators with the same mass dimension but

different charges. We have made use of these hierarchies to construct a naturally small

supersymmetric µ term, as well as a simple realization of thermal inflation. The solution

to the µ term presented here lacks some of the challenges of the more common approach of

employing the vacuum expectation value of a singlet field S in the superpotential λSHu·Hd

to form µeff = λ〈S〉 [11]. Furthermore, the cosmology of thermal inflation, which is a

natural byproduct of the Zhol
(a,−b) solution to the µ term presented in this work, allows for

large suppressions of unwanted relics, such as late-decaying gravitino and moduli fields,

while simultaneously allowing for the existence of a good cold dark matter candidate.
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A. Integrating out heavy superfields

In this appendix we describe the process of integrating out fields that become heavy upon

the spontaneous breaking of a U(1) gauge symmetry. Along the way, we provide evi-

dence for our claim that the operators in the resulting low-energy effective superpotential
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arise from the three mechanisms we described in the text: holomorphic insertions, inverse-

holomorphic insertions, and supersymmetry breaking insertions. Throughout the analysis,

we assume that the symmetry breaking VEVs are much larger than the scale of supersym-

metry breaking, and that the superpotential is small in units of the VEV. (For example,

this is the case if the superpotential contains only higher dimensional operators.) If this

condition holds true, the directions in field space that would be flat in the absence of a

superpotential or supersymmetry breaking remain almost flat after the inclusion of these

effects.

When there are almost flat directions, it is convenient to think of the process of forming

the effective theory below the symmetry breaking scale as a three-step process. The first

step consists of parametrizing the D-flat directions, and integrating out the vector multiplet

and the fields orthogonal to the flat directions at an arbitrary point well out in the moduli

space. The second step is to integrate out fields that do not condense, but that develop

large supersymmetric masses as a result of the symmetry breaking. Thirdly, supersymmetry

breaking is included as a small perturbation. For this procedure to be self-consistent, the

VEVs of the moduli fields must be much larger than the supersymmetry breaking terms.

Vector multiplets. Consider the case of two chiral superfields, φa and φ−b, obtaining

large VEVs and a collection of other fields φi that do not. The fields φa and φ−b have

charges a and −b respectively, and break the U(1) symmetry when they condense. The

leading terms in the Kähler potential are
∫

d4θ K =

∫

d4θ
(

φa
†eaV φa + φ†

−be
−bV φ−b + φ†

ie
qiV eVewφi

)

. (A.1)

Here, we have allowed for the possibility that the φi also transform under another gauge

group.

Now suppose φa and φ−b develop large expectation values, but the φi do not. Follow-

ing [5], we parametrize these fields as

φa =
√

b e−iaΩ τ (A.2)

φ−b =
√

a eibΩ τ

φi = e−iQiΩφ̃i,

where Ω, τ , and φ̃i are chiral superfields. To maintain this parametrization under U(1)

supergauge transformations, we take Ω to transform by a shift, and τ and φ̃q to be invariant.

Note that Ω can be gauged away completely. The motivation for this form is that τ is in

one-to-one correspondence with the unique gauge invariant polynomial that we can make

from φa and φ−b,

φb
aφ

a
−b =

√
aabbτa+b. (A.3)

Thus, τ parametrizes the ab flat direction [7].

The vector multiplet can be integrated out using its superfield equation of motion,

0 =
dK

dV
+ (D2, D̄2 terms) (A.4)

' ab τ †τ ea[V −i(Ω−Ω̄†)] − ab τ †τ e−b[V −i(Ω−Ω̄†)] + Qi φ̃
†
ie

Vew φ̃i e
Qi[V −i(Ω−Ω†)].
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Treating the φi as small and τ as large, the solution is

V − i(Ω − Ω†) = 0 + O
(

φ̃†
ie

Vew φ̃i

τ †τ

)

. (A.5)

Therefore the leading terms in the Kähler potential of the effective theory are

Keff = (a + b) τ †τ + φ̃†
ie

Vew φ̃i. (A.6)

Up to a trivial rescaling and small corrections, the Kähler potential for τ is canonical.

If the full theory also has a superpotential, then by gauge invariance it can only be a

function of τ and φ̃i, but not Ω. Thus, in passing to the effective theory, the procedure of

integrating out the vector multiplet (and in the process the gauge artifact Ω) only affects

the Kähler potential. The resulting superpotential is simply given by its expression in

the full theory with the replacements φa,−b → τ and φi → φ̃i. This is the source of the

holomorphic insertions described in the text. The light field corresponding to the almost

flat direction appears in the effective theory by expanding τ about its VEV.

The case of a single field obtaining a VEV can be treated in the same way. Now there is

no flat direction, and the condensing field is eaten by the vector multiplet. This is manifest

if we express the condensing field φV in the form

φV = e−iQV Ω 〈φV 〉, (A.7)

where 〈φV 〉 = ξ/QV (see eq. (2.1)), and then make a supergauge transformation to remove

Ω. The equation of motion for the vector multiplet then gives V = 0, up to small corrections

of order |φi|2/〈|φV |2〉. By gauge invariance, Ω cannot appear in the full superpotential, so

in the effective superpotential φV is simply replaced by its expectation value. There is no

expansion about this value because there is no flat direction.

When three or more fields develop large VEVs, we can again use a similar technique.

However, in this case the equation of motion for V is typically very complicated, and the

effective Kähler potential need not have the minimal form found in the two VEV scenario.

Chiral multiplets. The next step is to consider the effects of the VEVs on the superpo-

tential. In the effective theory, the flat direction fields such as τ are expanded about their

VEVs. By construction, these fields have masses parametrically smaller than the VEVs.

However, the appearance of large expectation values can give rise to large supersymmetric

masses for other fields that do not condense. These heavy fields should also be integrated

out. We show here that the integration out procedure can be performed in such a way

that the resulting effective superpotential will be holomorphic in both the light fields and

the parameters in the full superpotential, up to higher derivatives and supersymmetry

breaking [24].

Suppose only one chiral superfield Φ develops a large mass due to the VEVs. The full

superpotential must therefore be of the form

Wfull =
1

2
MΦ2 − f(Φ, φ), (A.8)
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where M denotes the large mass, proportional to the VEV, and φ refers to any field other

than Φ. By assumption, f(Φ, φ) contains no positive dimensional couplings unless they are

much smaller than M . The equation of motion for Φ can be expressed in the form

Φ =
1

M

[

∂f(Φ, φ)

∂Φ
+

D̄2

4

∂K

∂Φ

]

, (A.9)

where K denotes the Kähler potential. We can solve iteratively for Φ by replacing Φ

on the right hand side with this relation. Note that each repetition of this procedure

always brings in an additional power of 1/M , and thus the solution is expected to converge

rapidly. Since inverse powers of M appear in the solution for Φ, they will also appear

in the effective superpotential. This is the source of the inverse holomorphic insertions

(mechanism 2) described in the text.

We claim that to any order in this procedure, the resulting expression for Φ can be

written in the form

Φ = (holomorphic) +
D̄2

4
(maybe non−holomorphic), (A.10)

where the first term is holomorphic in both the fields and all the superpotential parameters.

At lowest order in the 1/M expansion we set Φ = 0 on the right hand side of eq. (A.9)

and our assertion is clearly satisfied. If we assume that at the n-th order our claim is true,

then inserting eq. (A.9) and expanding, we see that Φ will have the form of eq. (A.10) at

the (n + 1)-th order as well. Thus, our assertion follows by induction.

This result is enough to show that the effective superpotential will be holomorphic in

the couplings of the full superpotential, up to supersymmetry breaking and higher deriva-

tive operators. Inserting the full solution for Φ, in the form of eq. (A.10), into the super-

potential we obtain holomorphic terms without derivatives, as well as terms of the type

∫

d2θ G(φ)

(−D̄2

4

)

H(φ†). (A.11)

These can be converted into Kähler potential terms using the fact up to a total derivative,

−D̄2/4 is equivalent d2θ̄ [25]. Putting our solution for Φ into the Kähler potential, there

can also arise terms of the form
∫

d4θ A(φ)

(

−D2

4

)

B(φ) =

∫

d2θ A(φ)∂2B(φ), (A.12)

where we have made use of the identity (D̄2D2/16)φ = ∂2φ for any chiral superfield φ.

These higher derivative operators can be non-holomorphic in the parameters of the full

superpotential or the VEVs, but they are expected to be negligible at low energies. Soft

supersymmetry breaking can also be included in this procedure by treating the coefficients

in the full theory as constant superfields with non-zero auxiliary components.

Up to one subtlety, it is not hard to generalize this result to many large mass terms.

In this case, the full superpotential can be written in the form

Wfull =
1

2
ΦiMijΦj − f(Φ, φ), (A.13)
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where, again, f(Φ, φ) contains no large couplings with positive mass dimension, and i, j =

1, 2, . . . N . Without loss of generality, we may assume that the elements of Mij are all

either of order the large VEV scale M or zero, and that for a given i there is at least one

value of j for which Mij 6= 0.

The equations of motion for the Φi now become

MijΦj =
∂f

∂Φi
+

D̄2

4

∂K

∂Φi
. (A.14)

If det(M) ∼ MN , the mass matrix has no small eigenvalues, and we can take (holomorphic)

linear combinations of the equations of motion such that we end up with

Φi =
1

M̃i

[

f̃ ′
i(Φ, φ) +

D̄2

4
K̃ ′

i

]

, (A.15)

where M̃i is a rational holomorphic function of the Mij of order M and has a well-defined

spurious charge, f̃ ′
i is a linear combination of the ∂f/∂Φj, and K̃ ′

i is a linear combination

of the ∂K/∂Φk . This expression is holomorphic up to the D̄2 term, and therefore our

previous argument applies.

This procedure breaks down when the matrix M has an eigenvalue that is zero or much

smaller than the large mass scale M . This may be due to a symmetry, or the result of an

accidental cancellation. Either way, this implies that at least one linear combination of the

Φi is a light degree of freedom that should not be integrated out. To identify these light

states, we need only find the (approximate) null space of M. The resulting null vectors will

correspond to holomorphic linear combinations of the Φi with well-defined spurious charges

that remain light in the effective theory. By taking holomorphic linear combinations of the

fields, it is possible to form a new field basis comprised of the null vectors and some other

non-null combinations. In this basis we can integrate out the non-massless fields and apply

our previous arguments.

The main result of this section is that up to supersymmetry breaking and higher

derivative interactions, the procedure of integrating out heavy chiral superfields yields an

effective superpotential that is holomorphic in the light fields as well as all the parameters

(including the VEVs) present in the full superpotential. Non-holomorphic parameter de-

pendences can only appear in higher-derivative interactions in the effective superpotential

or from supersymmetry breaking. Eq. (A.9) also shows that the integration-out procedure

can generate inverse-holomorphic insertions of the VEV (or large mass) in the effective

superpotential.

As a simple example of this process, consider a model with a single heavy chiral field Φ

of mass M and minimal Kähler potential, interacting with the light chiral fields φ through

the superpotential [26]

W =
1

2
MΦ2 + Φ W1(φ) + W0(φ). (A.16)

The classical solution for Φ is

Φ = −
(

1 − ∂2

M †M

)−1 [

1

M
W1(φ) +

1

M †M

D̄2

4
W †

1 (φ†)

]

. (A.17)
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Replacing Φ by this solution, the low energy effective action becomes

Seff =

∫

d4xd2θd2θ̄ Keff +

[
∫

d4xd2θ Weff + (h.c.)

]

(A.18)

where

Keff = Klight + W †
1

1

M †M

(

1 − ∂2

M †M

)−1

W1, (A.19)

Weff = W0(φ) + W1
1

M

(

1 − ∂2

M †M

)−1

W1.

The first two mechanisms described in the text are illustrated in the above expressions.

W0(φ) contains, in general, holomorphic insertions that lead to couplings proportional to

〈τ〉/M∗, where M∗ is the cutoff of the original high-energy theory. The second term in

Weff contains inverse-holomorphic insertions of 1/M , as well as higher-order, subleading

corrections involving ∂2/M †M . Supersymmetry breaking insertions may also included as

small perturbations to this picture. Some supersymmetry breaking insertions can lead to

terms in W0(φ), as eq. (2.7) suggests, while others are most easily captured by the addition

of a soft supersymmetry breaking Lagrangian contribution, Lsoft, outside of the Weff or

Keff language.
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